车辆检测
车辆检测可以采用埋地线圈检测、红外检测、雷达检测技术、视频检测等多种方式。采用视频检测可以避免破坏路面、不必附加外部检测设备、不需矫正触发位置、节省开支,而且更适合移动式、便携式应用的要求。
系统进行视频车辆检测,需要具备很高的处理速度并采用优秀的算法,在基本不丢帧的情况下实现图像采集、处理。若处理速度慢,则导致丢帧,使系统无法检测到行驶速度较快的车辆,同时也难以保证在有利于识别的位置开始识别处理,影响系统识别率。因此,将视频车辆检测与牌照自动识别相结合具备一定的技术难度。
车牌识别系统原理图
车牌识别云台摄像机通过光抑制屏蔽,电子快门调节,宽动态功能等来实现抓拍车牌:
强光屏蔽:在低照度彩色摄像机的基础上,通过软件的功能,把图像中亮的部分遮挡。在交通监控中,一般可将大灯的强光遮挡,从而将车牌较清晰的抓拍下来。但是这款摄像机的缺点就是软件分辨不清,对于图像亮部分界定不清,有可能将车牌号码也遮挡,同时无法处理高速运动物体的抓拍。目前国产摄像机在强光屏蔽方面做的比较多,效果各方反映不一。
可调电子快门:对于高速运动的物体抓拍(高速公路上的汽车车速一般都在70KM/小时以上),可以通过降低电子快门速度来实现清晰抓拍,一般都是通过手动方式调整。但是这种方式的问题就是白天、晚上的照度不一样,必需设置2个快门速度来分别适应白天和晚上的监控。
宽动态功能:这是解决车灯对于抓拍影响的的办法,宽动态早是松下公司提出来的。当背景光过亮时,普通摄像机无法很好的解决明暗图像的显示问题。
作为智能交通领域确定车辆身份的重要手段,车牌识别技术为实现交通的智能管理发挥了很大作用,在各项工作中都有车牌识别技术的渗透。
识别流程
牌照自动识别是一项利用车辆的动态视频或静态图像进行牌照号码、牌照颜色自动识别的模式识别技术。其硬件基础一般包括触发设备(监测车辆是否进入视野)、摄像设备、照明设备、图像采集设备、识别车牌号码的处理机(如计算机)等,其软件核心包括车牌定位算法、车牌字符分割算法和光学字符识别算法等。某些车牌识别系统还具有通过视频图像判断是否有车的功能称之为视频车辆检测。一个完整的车牌识别系统应包括车辆检测、图像采集、车牌识别等几部分(如图1所示)。当车辆检测部分检测到车辆到达时触发图像采集单元,采集当前的视频图像。车牌识别单元对图像进行处理,定位出牌照位置,再将牌照中的字符分割出来进行识别,然后组成牌照号码输出。
车牌识别技术原理
1、车牌识别系统框架
文通车牌识别系统采用高度模块化的设计,将车牌识别过程的各个环节各自作为一个独立的模块,采用国际的计算机智能算法技术,首先通过摄像头提取车牌视频图像,对获取的每一帧图像,利用的高效视频检测技术对车牌进行定位和跟踪,从中自动提取车牌图像,然后经过车牌精确定位、切分和识别模块准确地自动分割和识别字符,得到车牌的全部字符信息以及颜色信息。系统框架如图所示:
2、车牌定位模块
车牌定位模块是一个十分重要的环节,是后续环节的基础,其准确性对整体系统性能的影响巨大。本系统实现了一种完全基于学习的多种特征融合的车牌定位新算法,适用于各种复杂的背景环境和不同的摄像角度。同步内置的区域设置功能,可以很大程度上减少外部环境对于车牌识别的干扰,达到的识别效率。
3、车牌矫正及定位模块
受拍摄条件的限制,图像中的车牌总不可避免的存在一定的倾斜,需要一个矫正和定位环节来进一步提高车牌图像的质量,为切分和识别模块做准备。本系统使用*创的精心设计的快速图像处理滤波器,计算速度快,利用车牌整体信息,避免了局部噪声带来的影响,另一个优点就是通过对多个中间结果的分析还可以对车牌进行定位,进一步减小非车牌区域的影响。本系统较之其他公司的车牌识别系统,对于倾斜车牌图片的支持要更多,一般的车牌识别软件,支持的倾斜角度是±5°,该车牌识别软件,能支持±45°的倾斜角度,并且通过内部倾斜校正算法,不会因为倾斜角度的增加而降低识别率。
4、车牌切分模块
车牌切分模块利用车牌文字的灰度、颜色、边缘分布等各种特征,能较好地抑制车牌周围其他噪声的影响,并能容忍一定倾斜角度的车牌。
5、车牌识别模块
在车牌识别模块中,采用了多种识别模型相结合的方法,构建了一种层次化的字符识别流程,有效地提高了字符识别的正确率。另一方面,在字符识别之前,使用计算机智能算法对字符图像进行了前期处理,不仅保留了图像信息,而且提高了图像质量和相似字符的可区分性,保证了字符识别的可靠性。
6、车牌识别结果决策模块
文通车牌识别系统可以对每帧车牌图像进行实时识别,因此在一辆车的识别过程中,本系统将得到若干相同或不同的识别结果。这就需要一个识别结果的决策模块,具体地说,决策模块利用一个车牌的帧图像,对识别结果进行智能化的决策,通过计算观测帧数、识别结果稳定性、平均可信度和相似度等度量值得到该车牌的综合可信度评价,从而决定是否输出识别结果,或是拒绝该结果。一个车牌的终识别结果是通过分析所有帧的识别结果,对它们进行智能化的归类和投票,并结合一定的文法信息综合而成。这种方法综合利用了所有帧的信息,减少了以往基于单幅图像的识别算法所带来的偶然性错误,大大提高了系统的识别率和识别结果的正确性和可靠性。