对边缘检测后的灰度图进行二值化处理
车牌图像经过边缘检测之后,车牌上的字符及边缘信息会**出来,同时,其他非字符和非车牌边框的边缘纹理特征也**了出来,为了减少噪声的影响,需要对车牌图像进行二值化处理,二值化是对图像进行阈值化的一种类型。根据阈值的选取情况,二值化的方法可分为全局阈值法、动态阈值法和局部阈值法,我们用类间方差法(也称Otsu算法)进行阈值化,来剔除一些梯度值较小的像素,减少需要查找的车牌范围,二值化处理后车牌图像的像素值为0或者255。
对车牌图像进行图像形态学操作
由于成像系统、传输介质、记录设备等的不完善,以及天气情况的变化等,车牌图像往往受到多种噪声的污染。在经过二值化处理的车牌图像上,会出现一些与要研究的对象(即车牌区域)不相关的孤立点或者像素块,扰乱图像的研究对象,影响对车牌区域的提取、分割等操作。于是要构造一种有效抑制噪声的滤波器来有效的去除目标和背景中的噪声,同时,能够很好地保护车牌区域的形状、大小及特定的车牌纹理特征。 图像滤波,即在尽量保留图像细节特征的条件下对目标图像的噪声进行抑制,是图像处理中消除噪声的不可或缺的操作,其处理的结果的好坏将直接影响到对后续图像进行处理和分析的有效性和可靠性。常用的滤波操作方法有很多种,如中值滤波、形态学滤波、高斯滤波、双边滤波等。我们在这里介绍一下中值滤波和本文所研究系统采用的形态学滤波。
车牌识别系统也是基于形态学操作的重要性质,对经过二值化后的车牌图像首先进行闭运算操作,使得车牌的字符区域连接起来,然后对车牌图像进行开运算操作,来消除车牌上的噪声,得到明亮的车牌区域从候选区域中去除伪车牌并定位出车牌区域 通过对车牌图像的数学形态算,图像中剩下少部分的连通区域,即为车牌的候选区域,这些区域包括车牌区域和伪车牌区域,为此,需要从图像中去除伪车牌并定位出车牌。
首先,经过对白色连通区域的轮廓进行处理得到矩形边界框,再根据我国车牌长宽比的特征,即44:14,考虑到在车牌定位过程中,由于对车牌的数学形态学操作会减少车牌信息以及拍摄所得到的车牌图像中车牌的倾斜等原因,取长宽阈值为2.0-6.0,这样就剔除了长宽比不符合条件的候选区域。 然后,由于对车牌图像的数学形态学操作会减少车牌信息,所以定位出的车牌区域会有可能小于车牌的实际区域,这时,我们就需要对定位出的车牌区域进行放大,在这里,我们对车牌区域进行放大的比例是120%,即对已经定位出的车牌候选区域的边界进行扩大。车牌由七个字符组成,在对候选区域对应的灰度化图像进行边缘检测二值化之后,正常情况下,车牌水平投影区域内每行的边缘点数要大于14,根据经验值,我们取15。在车牌水平投影区域内会出现较大的波峰,该波峰认为是车牌的上下边界,根据实验结果,要求波峰的始点和终点之差大于20小于120,从而得到车牌的上下边界。后,根据二值化车牌图像中车牌的纹理特征信息,即在车牌区域范围内会出现明显的梯度变化特征,来确定车牌区域,终定位出车牌。在二值化图像中,255代表车牌图像中的边缘信息,0代表非边缘信息。为了更加精确的定位出车牌和剔除伪车牌,需要对定位出的车牌区域进行筛选,有两个筛选条件,一个是在二值化图像中灰度值为255和灰度值为0的像素比大于0.25,另一个是二值化图像中灰度的跳变次数范围是[5,30]。
通过对车牌图像的灰度处理、边缘检测、二值化、图像形态学操作定位出车牌的候选区域,接着利用车牌的特征,如长宽比、像素比等,从候选区域中定位出车牌
车牌识别系统的关键技术及算法
车牌定位
车牌定位是车牌识别系统的基础,其定位的准确与否直接影响到车牌的字符分割和识别效果,是影响整个车牌识别系统识别率的主要因素。车牌定位,即运用数字图像处理、模式识别、人工智能等技术对采集到的汽车图像进行处理,从而准确地获得图像中的车牌区域,其输入是原始的汽车图像,输出是车牌图像。在现实车牌识别系统中,由于光照不均匀、背景的复杂性等原因,造成准确定位出车牌的难度较大。目前,根据车牌的特征,常见的车牌定位方法有基于车牌颜色特征信息的定位法、基于车牌区域频谱特征的定位法、基于分类器的车牌定位法、基于车牌边缘特征的车牌定位法等,这些方法各有所长。值得注意的是,车牌定位算法的分类并不是的,区别算法类别的标准并不十分明确。车牌定位算法的方法多种多样、各有所长,但存在着计算量大或者定位准确率不高等问题。
车牌定位是车牌识别的关键步骤,为了能在复杂背景和不均匀光照条件下快速准确定位车牌位置,基于改进Isotropic Sobel边缘检测算子的车牌定位算法,由此来解决其存在的问题,该算法通过改进Isotropic Sobel边缘检测算子,实现了车牌图像在水平、垂直以及对角线方向上的纹理特征提取,然后采用Otsu算法阈值化,再对阈值化后的二值图像做数学形态算得到车牌的候选区域,后利用车牌特征去除伪车牌。
号码识别
为了进行车牌识别,需要以下几个基本的步骤:
1)牌照定位,定位图片中的牌照位置;
2)牌照字符分割,把牌照中的字符分割出来;
3)牌照字符识别,把分割好的字符进行识别,终组成牌照号码。
车牌识别过程中,牌照颜色的识别依据算法不同,可能在上述不同步骤实现,通常与车牌识别互相配合、互相验证。
1)牌照定位
自然环境下,汽车图像背景复杂、光照不均匀,如何在自然背景中准确地确定牌照区域是整个识别过程的关键。首先对采集到的视频图像进行大范围相关搜索,找到符合汽车牌照特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,后选定一个的区域作为牌照区域,并将其从图像中分离出来。
2)牌照字符分割
完成牌照区域的定位后,再将牌照区域分割成单个字符,然后进行识别。字符分割一般采用垂直投影法。由于字符在垂直方向上的投影必然在字符间或字符内的间隙处取得局部小值的附近,并且这个位置应满足牌照的字符书写格式、字符、尺寸限制和一些其他条件。利用垂直投影法对复杂环境下的汽车图像中的字符分割有较好的效果。
3)牌照字符识别方法主要有基于模板匹配算法和基于人工神经网络算法。基于模板匹配算法首先将分割后的字符二值化并将其尺寸大小缩放为字符数据库中模板的大小,然后与所有的模板进行匹配,选择匹配作为结果。基于人工神经网络的算法有两种:一种是先对字符进行特征提取,然后用所获得特征来训练神经网络分配器;另一种方法是直接把图像输入网络,由网络自动实现特征提取直至识别出结果。
实际应用中,车牌识别系统的识别率还与牌照质量和拍摄质量密切相关。牌照质量会受到各种因素的影响,如生锈、污损、油漆剥落、字体褪色、牌照被遮挡、牌照倾斜、高亮反光、多牌照、**等等;实际拍摄过程也会受到环境亮度、拍摄方式、车辆速度等等因素的影响。这些影响因素不同程度上降低了车牌识别的识别率,也正是车牌识别系统的困难和挑战所在。为了提高识别率,除了不断地完善识别算法还应该想办法克服各种光照条件,使采集到的图像利于识别。