车牌字符分割
① 车牌字符分割算法的研究
车牌字符分割就是对已经定位出的车牌区域内的车牌字符进行分割,从而获取车牌上的字符,是车牌字符识别的前提和准备。车牌字符分割的好坏,直接影响到识别效果的好坏。在车牌识别系统中,由于车牌污染、背景复杂、光照不均匀、车牌发生倾斜、边框影响以及间隔符等因素影响,很难找到一种普遍使用的分割方法。
车牌区域定位完成之后,由于提取出来的车牌区域内的车牌图像可能存在倾斜现象,因此,在车牌字符分割之前,需要判断车牌图像是否倾斜。在车牌倾斜的情况下,需要准确的求得车牌的倾斜角度,然后把发生倾斜的车牌校正过来,为接下来的字符分割创造条件,这就是车牌的倾斜校正。常用的倾斜校正算法包括Radon变换、Hough变换。在车牌的倾斜校正完成之后,需要去除车牌的上下、左右边界,然后才能把车牌上的字符一个个的分割出来,得到一个单独的车牌字符图像,为后续的车牌字符识别做好准备,即车牌的字符分割。
在车牌的字符分割中,有许多因素会对车牌的字符分割造成影响,例如图像的噪声、车牌的定位不精确、字符的粘连、汉字的不连通等。本文介绍一种改进的水平投影算法,该算法能够克服这些因素造成的不良影响,并且能够准确的分割出车牌,为后续的精确识别做好准备。为了分割出相互独立的字符,对经过Otsu算法阈值化的灰度图进行分割。
车牌识别系统的关键技术及算法
车牌定位
车牌定位是车牌识别系统的基础,其定位的准确与否直接影响到车牌的字符分割和识别效果,是影响整个车牌识别系统识别率的主要因素。车牌定位,即运用数字图像处理、模式识别、人工智能等技术对采集到的汽车图像进行处理,从而准确地获得图像中的车牌区域,其输入是原始的汽车图像,输出是车牌图像。在现实车牌识别系统中,由于光照不均匀、背景的复杂性等原因,造成准确定位出车牌的难度较大。目前,根据车牌的特征,常见的车牌定位方法有基于车牌颜色特征信息的定位法、基于车牌区域频谱特征的定位法、基于分类器的车牌定位法、基于车牌边缘特征的车牌定位法等,这些方法各有所长。值得注意的是,车牌定位算法的分类并不是的,区别算法类别的标准并不十分明确。车牌定位算法的方法多种多样、各有所长,但存在着计算量大或者定位准确率不高等问题。
车牌定位是车牌识别的关键步骤,为了能在复杂背景和不均匀光照条件下快速准确定位车牌位置,基于改进Isotropic Sobel边缘检测算子的车牌定位算法,由此来解决其存在的问题,该算法通过改进Isotropic Sobel边缘检测算子,实现了车牌图像在水平、垂直以及对角线方向上的纹理特征提取,然后采用Otsu算法阈值化,再对阈值化后的二值图像做数学形态算得到车牌的候选区域,后利用车牌特征去除伪车牌。
对边缘检测后的灰度图进行二值化处理
车牌图像经过边缘检测之后,车牌上的字符及边缘信息会**出来,同时,其他非字符和非车牌边框的边缘纹理特征也**了出来,为了减少噪声的影响,需要对车牌图像进行二值化处理,二值化是对图像进行阈值化的一种类型。根据阈值的选取情况,二值化的方法可分为全局阈值法、动态阈值法和局部阈值法,我们用类间方差法(也称Otsu算法)进行阈值化,来剔除一些梯度值较小的像素,减少需要查找的车牌范围,二值化处理后车牌图像的像素值为0或者255。
目前ITS市场中车牌识别系统主要功能包括:
1、 车辆牌照自动识别(信息包括完整的牌照信息,颜色、字符、汉字、数字全面完整的识别)。
2、 车速的自动准确检测。
3、 违法黑牌照车辆的抓拍报警。
4、 车辆识别信息与车管所车辆信息的及时联动、操作权限的分立、前端采集信息的实时上传以及网络断点续传等主流功能。
其中车辆牌照的自动识别系统目前业界纯视频识别率应达到90%以上,外触发识别率应达到98%以上。这里所说的识别率是指整牌的识别率,包括车牌颜色、字符、数字以及汉字四项内容。以目前技术角度来说**准确识别是理想化的情况,实际情况中车辆牌照的识别还存在外界因素的种种影响,例如车速、气候、照度等因素都会影响终的识别效果。车辆牌照的抓拍前提是摄像机快门,即SHUTTER的反应速度快慢来决定。通常来说车辆速度小于140公里/小时的时候,快门速度采用1/500~1/1000均可达到良好的效果,业内所用的摄像机其内部参数往往在这一区间内,这是业内厂家的一种共识。