号码识别
为了进行车牌识别,需要以下几个基本的步骤:
1)牌照定位,定位图片中的牌照位置;
2)牌照字符分割,把牌照中的字符分割出来;
3)牌照字符识别,把分割好的字符进行识别,终组成牌照号码。
车牌识别过程中,牌照颜色的识别依据算法不同,可能在上述不同步骤实现,通常与车牌识别互相配合、互相验证。
1)牌照定位
自然环境下,汽车图像背景复杂、光照不均匀,如何在自然背景中准确地确定牌照区域是整个识别过程的关键。首先对采集到的视频图像进行大范围相关搜索,找到符合汽车牌照特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,后选定一个的区域作为牌照区域,并将其从图像中分离出来。
2)牌照字符分割
完成牌照区域的定位后,再将牌照区域分割成单个字符,然后进行识别。字符分割一般采用垂直投影法。由于字符在垂直方向上的投影必然在字符间或字符内的间隙处取得局部小值的附近,并且这个位置应满足牌照的字符书写格式、字符、尺寸限制和一些其他条件。利用垂直投影法对复杂环境下的汽车图像中的字符分割有较好的效果。
3)牌照字符识别方法主要有基于模板匹配算法和基于人工神经网络算法。基于模板匹配算法首先将分割后的字符二值化并将其尺寸大小缩放为字符数据库中模板的大小,然后与所有的模板进行匹配,选择匹配作为结果。基于人工神经网络的算法有两种:一种是先对字符进行特征提取,然后用所获得特征来训练神经网络分配器;另一种方法是直接把图像输入网络,由网络自动实现特征提取直至识别出结果。
实际应用中,车牌识别系统的识别率还与牌照质量和拍摄质量密切相关。牌照质量会受到各种因素的影响,如生锈、污损、油漆剥落、字体褪色、牌照被遮挡、牌照倾斜、高亮反光、多牌照、**等等;实际拍摄过程也会受到环境亮度、拍摄方式、车辆速度等等因素的影响。这些影响因素不同程度上降低了车牌识别的识别率,也正是车牌识别系统的困难和挑战所在。为了提高识别率,除了不断地完善识别算法还应该想办法克服各种光照条件,使采集到的图像利于识别。
对边缘检测后的灰度图进行二值化处理
车牌图像经过边缘检测之后,车牌上的字符及边缘信息会**出来,同时,其他非字符和非车牌边框的边缘纹理特征也**了出来,为了减少噪声的影响,需要对车牌图像进行二值化处理,二值化是对图像进行阈值化的一种类型。根据阈值的选取情况,二值化的方法可分为全局阈值法、动态阈值法和局部阈值法,我们用类间方差法(也称Otsu算法)进行阈值化,来剔除一些梯度值较小的像素,减少需要查找的车牌范围,二值化处理后车牌图像的像素值为0或者255。
车牌识别系统主要解决的问题
车牌识别技术可以实现自动登记车辆“身份”,已经被广泛应用于各种交通场合,对“平安城市”的建设有着至关重要的作。具体概括如下:
① 电子系统
电子系统作为一种抓拍车辆违章违规行为的智能系统,大大降低了交通管理压力。随着计算机技术和CCD技术的发展,目前电子系统已经是一种纯视频触发的高清抓拍系统,可以完成多项违章抓拍功能,其中包括违章闯红灯抓拍功能、违章不按车道行驶抓拍功能、违章压线变道抓拍功能、违章压双黄线抓拍功能和违章逆行抓拍功能等内容。
② 卡口系统
卡口系统对监控路段的机动车辆进行全天候的图像抓拍,自动识别车牌号码,通过公安专网与卡口系统控制中心的黑名单数据库进行比对,当发现结果相符合时,系统自动向相关人员发出警报信号。卡口系统记录的图像还可以清楚地分辨司乘人员(**)的面部特征。
③ 高速公路收费系统
高速公路收费系统已经基本实现自动化,当车辆在高速公路收费入口站时,系统进行车牌识别,保存车牌信息,当车辆在高速公路收费出口站时,系统再次进行车牌识别,与进入车辆的车牌信息进行比对,只有进站和出站的车牌一致方可让车辆通行,自动收费系统可以有效地提高车辆的通行效率,并且可以有效地检测出逃费车辆。
④ 高速公路**速抓拍系统
系统抓拍**速的车辆和识别车牌号码,并通过公安专网将**速车辆的车牌号码传达到各出口处罚点,各出口处罚点用车牌识别设备对出口车辆进行车牌识别,与己经收到的**速车辆的号码对比,一旦号码相同立即报警。
⑤ 停车场收费系统
当车辆进入停车场时,收费系统抓拍车辆图片进行车牌识别,保存车辆信息和进入时间,并语音播报空闲车位,当车辆离 停车场时,收费系统自动识别出该车的车牌号码和保存车辆离 的时间,并在数据库中查找该车的进入时间,计算出该车的停车费周,车主交完费用后,收费系统自动放行。停车场收费系统不但实现自动化管理,节约人力,而且还保证了车辆停放的安全性。
⑥ 公交车报站系统
当公交车进入和离开公交站台时,报站系统对其进行车牌识别,然后与数据库中的车牌进行比对,语音报读车牌结果和公交线路。综上所述,车牌识别技术的广泛应用使道路安全、交通通畅、车辆安全、环境保护得到了全面的**。
车牌识别系统的基本工作原理及流程
车牌识别就是依次实现汽车图像的车牌定位、车牌字符分割、车牌字符识别算法的过程。车牌定位就是把车牌图像从含有汽车和背景的图像中提取出来,其输入的是原始的汽车图像,输出是车牌图像。
车牌的字符分割就是通过对车牌图像的预处理、几何校正等把字符从车牌图像中分割出来,分成一个个独立的字符,其输入是车牌定位后得到的车牌图像,输出是经过预处理、几何校正等后得到的一组单个的字符图像,并得到各个字符的点阵数据。字符识别是依次从单个字符点阵数据中提取字符特征数据,并给出识别结果。
① 车辆检测跟踪模块
车辆检测跟踪模块主要对视频流进行分析,判断其中车辆的位置,对图像中的车辆进行跟踪,并在车辆位置时刻,记录该车辆的特写图片,由于加入了跟踪模块,系统能够很好地克服各种外界的干扰,使得到更加合理的识别结果,可以检测无牌车辆并输出结果。
② 车牌定位模块
车牌定位模块是一个十分重要的环节,是后续环节的基础,其准确性对整体系统性能的影响巨大。车牌系统完全摒弃了以往的算法思路,实现了一种完全基于学习的多种特征融合的车牌定位新算法,适用于各种复杂的背景环境和不同的摄像角度。
③ 车牌矫正及精定位模块
由于受拍摄条件的限制,图像中的车牌总不可避免存在一定的倾斜,需要一个矫正和精定位环节来进一步提高车牌图像的质量,为切分和识别模块做准备。使用精心设计的快速图像处理滤波器,不仅计算快速,而且利用的是车牌的整体信息,避免了局部噪声带来的影响。使用该算法的另一个优点就是通过对多个中间结果的分析还可以对车牌进行精定位,进一步减少非车牌区域的影响。
④ 车牌切分模块
车牌系统的车牌切分模块利用了车牌文字的灰度、颜色、边缘分布等各种特征,能较好地抑制车牌周围其他噪声的影响,并能容忍一定倾斜角度的车牌。这一算法有利于类似移动式稽查这种车牌图像噪声较大的应用。
⑤ 车牌识别模块
在车牌识别系统中,通常采用多种识别模型相结合的方法来进行车牌识别,构建一种层次化的字符识别流程,可有效地提高字符识别的正确率。另一方面,在字符识别之前,使用计算机智能算法对字符图像进行前期处理,不仅可尽可能保留图像信息,而且可提高图像质量,提高相似字符的可区分性,保证字符识别的可靠性。
⑥ 车牌识别结果决策模块
识别结果决策模块,具体地说,决策模块利用一个车牌经过视野的过程留下的历史记录,对识别结果进行智能化的决策。其通过计算观测帧数、识别结果稳定性、轨迹稳定性、速度稳定性、平均可信度和相似度等度量值得到该车牌的综合可信度评价,从而决定是继续跟踪该车牌,还是输出识别结果,或是拒绝该结果。这种方法综合利用了所有帧的信息,减少了以往基于单幅图像的识别算法所带来的偶然性错误,大大提高了系统的识别率和识别结果的正确性和可靠性。
⑦ 车牌跟踪模块
车牌跟踪模块记录下车辆行驶过程中每一帧中该车车牌的位置以及外观、识别结果、可信度等各种历史信息。由于车牌跟踪模块采用了具有一定容错能力的运动模型和更新模型,使得那些被短时间遮挡或瞬间模糊的车牌仍能被正确地跟踪和预测,终只输出一个识别结果。