车牌识别系统的关键技术及算法
车牌定位
车牌定位是车牌识别系统的基础,其定位的准确与否直接影响到车牌的字符分割和识别效果,是影响整个车牌识别系统识别率的主要因素。车牌定位,即运用数字图像处理、模式识别、人工智能等技术对采集到的汽车图像进行处理,从而准确地获得图像中的车牌区域,其输入是原始的汽车图像,输出是车牌图像。在现实车牌识别系统中,由于光照不均匀、背景的复杂性等原因,造成准确定位出车牌的难度较大。目前,根据车牌的特征,常见的车牌定位方法有基于车牌颜色特征信息的定位法、基于车牌区域频谱特征的定位法、基于分类器的车牌定位法、基于车牌边缘特征的车牌定位法等,这些方法各有所长。值得注意的是,车牌定位算法的分类并不是的,区别算法类别的标准并不十分明确。车牌定位算法的方法多种多样、各有所长,但存在着计算量大或者定位准确率不高等问题。
车牌定位是车牌识别的关键步骤,为了能在复杂背景和不均匀光照条件下快速准确定位车牌位置,基于改进Isotropic Sobel边缘检测算子的车牌定位算法,由此来解决其存在的问题,该算法通过改进Isotropic Sobel边缘检测算子,实现了车牌图像在水平、垂直以及对角线方向上的纹理特征提取,然后采用Otsu算法阈值化,再对阈值化后的二值图像做数学形态算得到车牌的候选区域,后利用车牌特征去除伪车牌。
目前ITS市场中车牌识别系统主要功能包括:
1、 车辆牌照自动识别(信息包括完整的牌照信息,颜色、字符、汉字、数字全面完整的识别)。
2、 车速的自动准确检测。
3、 违法黑牌照车辆的抓拍报警。
4、 车辆识别信息与车管所车辆信息的及时联动、操作权限的分立、前端采集信息的实时上传以及网络断点续传等主流功能。
其中车辆牌照的自动识别系统目前业界纯视频识别率应达到90%以上,外触发识别率应达到98%以上。这里所说的识别率是指整牌的识别率,包括车牌颜色、字符、数字以及汉字四项内容。以目前技术角度来说**准确识别是理想化的情况,实际情况中车辆牌照的识别还存在外界因素的种种影响,例如车速、气候、照度等因素都会影响终的识别效果。车辆牌照的抓拍前提是摄像机快门,即SHUTTER的反应速度快慢来决定。通常来说车辆速度小于140公里/小时的时候,快门速度采用1/500~1/1000均可达到良好的效果,业内所用的摄像机其内部参数往往在这一区间内,这是业内厂家的一种共识。
对输入的彩像进行灰度化处理:
彩像包含更多的信息,但是直接对彩像进行处理的话,系统的执行速度将会降低,储存空间也会变大。彩像的灰度化是图像处理的一种基本的方法,在模式识别领域得到广泛的运用,合理的灰度化将对图像信息的提取和后续处理有很大的帮助,能够节省储存空间,加快处理速度。
边缘检测的方法是考察图像的像素在某个领域内灰度的变化情况,标识数字图像中亮度变化明显的点。图像的边缘检测能够大幅度地减少数据量,并且剔除不相关的信息,保存图像重要的结构属性。在实际的图像分割中,往往只用到一阶和二阶导数进行边缘检测,虽然,在原理上,可以用更高阶的导数,但是,因为噪声的影响,在纯粹二阶导数操作中就会出现对噪声敏感的现象,三阶以上的导数信息往往失去了应用价值。此外,二阶导数还可以说明灰度突变的类型,在有些情况下,如灰度变化均匀的图像,只利用一阶导数可能找不到边界,此时二阶导数就能提供很有用的信息。为了减少二阶导数对噪声敏感,解决的办法是先对图像进行平滑滤波,消除部分噪声,再进行边缘检测。
识别流程
牌照自动识别是一项利用车辆的动态视频或静态图像进行牌照号码、牌照颜色自动识别的模式识别技术。其硬件基础一般包括触发设备(监测车辆是否进入视野)、摄像设备、照明设备、图像采集设备、识别车牌号码的处理机(如计算机)等,其软件核心包括车牌定位算法、车牌字符分割算法和光学字符识别算法等。某些车牌识别系统还具有通过视频图像判断是否有车的功能称之为视频车辆检测。一个完整的车牌识别系统应包括车辆检测、图像采集、车牌识别等几部分(如图1所示)。当车辆检测部分检测到车辆到达时触发图像采集单元,采集当前的视频图像。车牌识别单元对图像进行处理,定位出牌照位置,再将牌照中的字符分割出来进行识别,然后组成牌照号码输出。