车牌识别系统主要解决的问题
车牌识别技术可以实现自动登记车辆“身份”,已经被广泛应用于各种交通场合,对“平安城市”的建设有着至关重要的作。具体概括如下:
① 电子系统
电子系统作为一种抓拍车辆违章违规行为的智能系统,大大降低了交通管理压力。随着计算机技术和CCD技术的发展,目前电子系统已经是一种纯视频触发的高清抓拍系统,可以完成多项违章抓拍功能,其中包括违章闯红灯抓拍功能、违章不按车道行驶抓拍功能、违章压线变道抓拍功能、违章压双黄线抓拍功能和违章逆行抓拍功能等内容。
② 卡口系统
卡口系统对监控路段的机动车辆进行全天候的图像抓拍,自动识别车牌号码,通过公安专网与卡口系统控制中心的黑名单数据库进行比对,当发现结果相符合时,系统自动向相关人员发出警报信号。卡口系统记录的图像还可以清楚地分辨司乘人员(**)的面部特征。
③ 高速公路收费系统
高速公路收费系统已经基本实现自动化,当车辆在高速公路收费入口站时,系统进行车牌识别,保存车牌信息,当车辆在高速公路收费出口站时,系统再次进行车牌识别,与进入车辆的车牌信息进行比对,只有进站和出站的车牌一致方可让车辆通行,自动收费系统可以有效地提高车辆的通行效率,并且可以有效地检测出逃费车辆。
④ 高速公路**速抓拍系统
系统抓拍**速的车辆和识别车牌号码,并通过公安专网将**速车辆的车牌号码传达到各出口处罚点,各出口处罚点用车牌识别设备对出口车辆进行车牌识别,与己经收到的**速车辆的号码对比,一旦号码相同立即报警。
⑤ 停车场收费系统
当车辆进入停车场时,收费系统抓拍车辆图片进行车牌识别,保存车辆信息和进入时间,并语音播报空闲车位,当车辆离 停车场时,收费系统自动识别出该车的车牌号码和保存车辆离 的时间,并在数据库中查找该车的进入时间,计算出该车的停车费周,车主交完费用后,收费系统自动放行。停车场收费系统不但实现自动化管理,节约人力,而且还保证了车辆停放的安全性。
⑥ 公交车报站系统
当公交车进入和离开公交站台时,报站系统对其进行车牌识别,然后与数据库中的车牌进行比对,语音报读车牌结果和公交线路。综上所述,车牌识别技术的广泛应用使道路安全、交通通畅、车辆安全、环境保护得到了全面的**。
车牌识别系统的基本工作原理及流程
车牌识别就是依次实现汽车图像的车牌定位、车牌字符分割、车牌字符识别算法的过程。车牌定位就是把车牌图像从含有汽车和背景的图像中提取出来,其输入的是原始的汽车图像,输出是车牌图像。
车牌的字符分割就是通过对车牌图像的预处理、几何校正等把字符从车牌图像中分割出来,分成一个个独立的字符,其输入是车牌定位后得到的车牌图像,输出是经过预处理、几何校正等后得到的一组单个的字符图像,并得到各个字符的点阵数据。字符识别是依次从单个字符点阵数据中提取字符特征数据,并给出识别结果。
① 车辆检测跟踪模块
车辆检测跟踪模块主要对视频流进行分析,判断其中车辆的位置,对图像中的车辆进行跟踪,并在车辆位置时刻,记录该车辆的特写图片,由于加入了跟踪模块,系统能够很好地克服各种外界的干扰,使得到更加合理的识别结果,可以检测无牌车辆并输出结果。
② 车牌定位模块
车牌定位模块是一个十分重要的环节,是后续环节的基础,其准确性对整体系统性能的影响巨大。车牌系统完全摒弃了以往的算法思路,实现了一种完全基于学习的多种特征融合的车牌定位新算法,适用于各种复杂的背景环境和不同的摄像角度。
③ 车牌矫正及精定位模块
由于受拍摄条件的限制,图像中的车牌总不可避免存在一定的倾斜,需要一个矫正和精定位环节来进一步提高车牌图像的质量,为切分和识别模块做准备。使用精心设计的快速图像处理滤波器,不仅计算快速,而且利用的是车牌的整体信息,避免了局部噪声带来的影响。使用该算法的另一个优点就是通过对多个中间结果的分析还可以对车牌进行精定位,进一步减少非车牌区域的影响。
④ 车牌切分模块
车牌系统的车牌切分模块利用了车牌文字的灰度、颜色、边缘分布等各种特征,能较好地抑制车牌周围其他噪声的影响,并能容忍一定倾斜角度的车牌。这一算法有利于类似移动式稽查这种车牌图像噪声较大的应用。
⑤ 车牌识别模块
在车牌识别系统中,通常采用多种识别模型相结合的方法来进行车牌识别,构建一种层次化的字符识别流程,可有效地提高字符识别的正确率。另一方面,在字符识别之前,使用计算机智能算法对字符图像进行前期处理,不仅可尽可能保留图像信息,而且可提高图像质量,提高相似字符的可区分性,保证字符识别的可靠性。
⑥ 车牌识别结果决策模块
识别结果决策模块,具体地说,决策模块利用一个车牌经过视野的过程留下的历史记录,对识别结果进行智能化的决策。其通过计算观测帧数、识别结果稳定性、轨迹稳定性、速度稳定性、平均可信度和相似度等度量值得到该车牌的综合可信度评价,从而决定是继续跟踪该车牌,还是输出识别结果,或是拒绝该结果。这种方法综合利用了所有帧的信息,减少了以往基于单幅图像的识别算法所带来的偶然性错误,大大提高了系统的识别率和识别结果的正确性和可靠性。
⑦ 车牌跟踪模块
车牌跟踪模块记录下车辆行驶过程中每一帧中该车车牌的位置以及外观、识别结果、可信度等各种历史信息。由于车牌跟踪模块采用了具有一定容错能力的运动模型和更新模型,使得那些被短时间遮挡或瞬间模糊的车牌仍能被正确地跟踪和预测,终只输出一个识别结果。
车牌识别系统的关键技术及算法
车牌定位
车牌定位是车牌识别系统的基础,其定位的准确与否直接影响到车牌的字符分割和识别效果,是影响整个车牌识别系统识别率的主要因素。车牌定位,即运用数字图像处理、模式识别、人工智能等技术对采集到的汽车图像进行处理,从而准确地获得图像中的车牌区域,其输入是原始的汽车图像,输出是车牌图像。在现实车牌识别系统中,由于光照不均匀、背景的复杂性等原因,造成准确定位出车牌的难度较大。目前,根据车牌的特征,常见的车牌定位方法有基于车牌颜色特征信息的定位法、基于车牌区域频谱特征的定位法、基于分类器的车牌定位法、基于车牌边缘特征的车牌定位法等,这些方法各有所长。值得注意的是,车牌定位算法的分类并不是的,区别算法类别的标准并不十分明确。车牌定位算法的方法多种多样、各有所长,但存在着计算量大或者定位准确率不高等问题。
车牌定位是车牌识别的关键步骤,为了能在复杂背景和不均匀光照条件下快速准确定位车牌位置,基于改进Isotropic Sobel边缘检测算子的车牌定位算法,由此来解决其存在的问题,该算法通过改进Isotropic Sobel边缘检测算子,实现了车牌图像在水平、垂直以及对角线方向上的纹理特征提取,然后采用Otsu算法阈值化,再对阈值化后的二值图像做数学形态算得到车牌的候选区域,后利用车牌特征去除伪车牌。
车牌字符分割
① 车牌字符分割算法的研究
车牌字符分割就是对已经定位出的车牌区域内的车牌字符进行分割,从而获取车牌上的字符,是车牌字符识别的前提和准备。车牌字符分割的好坏,直接影响到识别效果的好坏。在车牌识别系统中,由于车牌污染、背景复杂、光照不均匀、车牌发生倾斜、边框影响以及间隔符等因素影响,很难找到一种普遍使用的分割方法。
车牌区域定位完成之后,由于提取出来的车牌区域内的车牌图像可能存在倾斜现象,因此,在车牌字符分割之前,需要判断车牌图像是否倾斜。在车牌倾斜的情况下,需要准确的求得车牌的倾斜角度,然后把发生倾斜的车牌校正过来,为接下来的字符分割创造条件,这就是车牌的倾斜校正。常用的倾斜校正算法包括Radon变换、Hough变换。在车牌的倾斜校正完成之后,需要去除车牌的上下、左右边界,然后才能把车牌上的字符一个个的分割出来,得到一个单独的车牌字符图像,为后续的车牌字符识别做好准备,即车牌的字符分割。
在车牌的字符分割中,有许多因素会对车牌的字符分割造成影响,例如图像的噪声、车牌的定位不精确、字符的粘连、汉字的不连通等。本文介绍一种改进的水平投影算法,该算法能够克服这些因素造成的不良影响,并且能够准确的分割出车牌,为后续的精确识别做好准备。为了分割出相互独立的字符,对经过Otsu算法阈值化的灰度图进行分割。